Search results
Results from the WOW.Com Content Network
A sentence diagram is a pictorial representation of the grammatical structure of a sentence. The term "sentence diagram" is used more when teaching written language, where sentences are diagrammed. The model shows the relations between words and the nature of sentence structure and can be used as a tool to help recognize which potential ...
Visual proof of the Pythagorean identity: for any angle , the point (,) = (, ) lies on the unit circle, which satisfies the equation + =.Thus, + =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...
List or describe a set of sentences in the language L σ, called the axioms of the theory. Give a set of σ-structures, and define a theory to be the set of sentences in L σ holding in all these models. For example, the "theory of finite fields" consists of all sentences in the language of fields that are true in all finite fields. An L σ ...
The positive diagram of A is the set of all atomic σ'-sentences that A satisfies. It is denoted by diag + A. The elementary diagram of A is the set eldiag A of all first-order σ'-sentences that are satisfied by A or, equivalently, the complete (first-order) theory of the natural expansion of A to the signature σ'.
The resulting identity is one of the most commonly used in mathematics. Among many uses, it gives a simple proof of the AM–GM inequality in two variables. The proof holds in any commutative ring. Conversely, if this identity holds in a ring R for all pairs of elements a and b, then R is commutative. To see this, apply the distributive law to ...
(The category's three identity morphisms 1 X, 1 Y and 1 Z, if explicitly represented, would appear as three arrows, from the letters X, Y, and Z to themselves, respectively.) Category theory is a general theory of mathematical structures and their relations.
A set of sentences is called a (first-order) theory, which takes the sentences in the set as its axioms. A theory is satisfiable if it has a model M ⊨ T {\displaystyle {\mathcal {M}}\models T} , i.e. a structure (of the appropriate signature) which satisfies all the sentences in the set T {\displaystyle T} .
The Keynesian cross diagram includes an identity line to show states in which aggregate demand equals output. In a 2-dimensional Cartesian coordinate system, with x representing the abscissa and y the ordinate, the identity line [1] [2] or line of equality [3] is the y = x line. The line, sometimes called the 1:1 line, has a slope of 1. [4]