Search results
Results from the WOW.Com Content Network
A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...
The vertex A is equidistant from the focus F and from the directrix. Since C is on the directrix, the y coordinates of F and C are equal in absolute value and opposite in sign. B is the midpoint of FC. Its x coordinate is half that of D, that is, x/2.
A parabola may also be defined in terms of its focus and latus rectum line (parallel to the directrix and passing through the focus): it is the locus of points whose distance to the focus plus or minus the distance to the line is equal to 2a; plus if the point is between the directrix and the latus rectum, minus otherwise.
An ellipse may also be defined in terms of one focal point and a line outside the ellipse called the directrix: for all points on the ellipse, the ratio between the distance to the focus and the distance to the directrix is a constant.
The directrix is often taken as a plane curve, in a plane not containing the apex, but this is not a requirement. [1] In general, a conical surface consists of two congruent unbounded halves joined by the apex. Each half is called a nappe, and is the union of all the rays that start at the apex and pass through a point of some fixed space curve ...
In this case one could have used the apex as the directrix, i.e. = (,,) and = (, ,) as the line directions. For any cone one can choose the apex as the directrix. This shows that the directrix of a ruled surface may degenerate to a point.
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
The ellipse thus generated has its second focus at the center of the directrix circle, and the ellipse lies entirely within the circle. For the parabola, the center of the directrix moves to the point at infinity (see Projective geometry). The directrix "circle" becomes a curve with zero curvature, indistinguishable from a straight line.