Search results
Results from the WOW.Com Content Network
The semantics of priority queues naturally suggest a sorting method: insert all the elements to be sorted into a priority queue, and sequentially remove them; they will come out in sorted order. This is actually the procedure used by several sorting algorithms , once the layer of abstraction provided by the priority queue is removed.
Priority queue: A priority queue is an abstract concept like "a list" or "a map"; just as a list can be implemented with a linked list or an array, a priority queue can be implemented with a heap or a variety of other methods. K-way merge: A heap data structure is useful to merge many already-sorted input streams into a single sorted output ...
Queues provide services in computer science, transport, and operations research where various entities such as data, objects, persons, or events are stored and held to be processed later. In these contexts, the queue performs the function of a buffer. Another usage of queues is in the implementation of breadth-first search.
Priority queue (such as a heap) Double-ended queue (deque) Double-ended priority queue (DEPQ) Single-ended types, such as stack, generally only admit a single peek, at the end that is modified. Double-ended types, such as deques, admit two peeks, one at each end. Names for peek vary. "Peek" or "top" are common for stacks, while for queues ...
In computer science, a double-ended priority queue (DEPQ) [1] or double-ended heap [2] is a data structure similar to a priority queue or heap, but allows for efficient removal of both the maximum and minimum, according to some ordering on the keys (items) stored in the structure. Every element in a DEPQ has a priority or value.
The d-ary heap consists of an array of n items, each of which has a priority associated with it. These items may be viewed as the nodes in a complete d-ary tree, listed in breadth first traversal order: the item at position 0 of the array (using zero-based numbering) forms the root of the tree, the items at positions 1 through d are its children, the next d 2 items are its grandchildren, etc.
Binary heaps are a common way of implementing priority queues. [1]: 162–163 The binary heap was introduced by J. W. J. Williams in 1964 as a data structure for implementing heapsort. [2] A binary heap is defined as a binary tree with two additional constraints: [3]
In computer science, a Fibonacci heap is a data structure for priority queue operations, consisting of a collection of heap-ordered trees.It has a better amortized running time than many other priority queue data structures including the binary heap and binomial heap.