Search results
Results from the WOW.Com Content Network
Merge sort parallelizes well due to the use of the divide-and-conquer method. Several different parallel variants of the algorithm have been developed over the years. Some parallel merge sort algorithms are strongly related to the sequential top-down merge algorithm while others have a different general structure and use the K-way merge method.
Repeatedly merge sublists to create a new sorted sublist until the single list contains all elements. The single list is the sorted list. The merge algorithm is used repeatedly in the merge sort algorithm. An example merge sort is given in the illustration. It starts with an unsorted array of 7 integers. The array is divided into 7 partitions ...
The simple parallel merge sort of CLRS is a fork–join algorithm. [5]mergesort(A, lo, hi): if lo < hi: // at least one element of input mid = ⌊lo + (hi - lo) / 2⌋ fork mergesort(A, lo, mid) // process (potentially) in parallel with main task mergesort(A, mid, hi) // main task handles second recursion join merge(A, lo, mid, hi)
The solutions to the sub-problems are then combined to give a solution to the original problem. The divide-and-conquer technique is the basis of efficient algorithms for many problems, such as sorting (e.g., quicksort , merge sort ), multiplying large numbers (e.g., the Karatsuba algorithm ), finding the closest pair of points , syntactic ...
However, it has additional O(n) space complexity, and involves a large number of copies in simple implementations. Merge sort has seen a relatively recent surge in popularity for practical implementations, due to its use in the sophisticated algorithm Timsort, which is used for the standard sort routine in the programming languages Python [25 ...
Timsort is a hybrid, stable sorting algorithm, derived from merge sort and insertion sort, designed to perform well on many kinds of real-world data. It was implemented by Tim Peters in 2002 for use in the Python programming language. The algorithm finds subsequences of the data that are already ordered (runs) and uses them to sort the ...
k-way merge algorithms usually take place in the second stage of external sorting algorithms, much like they do for merge sort. A multiway merge allows for the files outside of memory to be merged in fewer passes than in a binary merge. If there are 6 runs that need be merged then a binary merge would need to take 3 merge passes, as opposed to ...
Block sort, or block merge sort, is a sorting algorithm combining at least two merge operations with an insertion sort to arrive at O(n log n) (see Big O notation) in-place stable sorting time. It gets its name from the observation that merging two sorted lists, A and B , is equivalent to breaking A into evenly sized blocks , inserting each A ...