Search results
Results from the WOW.Com Content Network
Potassium bromide (KBr) has one of the highest dipole moments because it is an ionic compound that exists as a molecule in the gas phase. The bent molecule H 2 O has a net dipole. The two bond dipoles do not cancel. The overall dipole moment of a molecule may be approximated as a vector sum of bond dipole moments.
2, has zero dipole moment, while near the other extreme, gas phase potassium bromide, KBr, which is highly ionic, has a dipole moment of 10.41 D. [9] [page needed] [10] [verification needed] For polyatomic molecules, there is more than one bond. The total molecular dipole moment may be approximated as the vector sum of the individual bond ...
The dipole moment density of the array p(r) contains both the location of the array and its dipole moment. When it comes time to calculate the electric field in some region containing the array, Maxwell's equations are solved, and the information about the charge array is contained in the polarization density P ( r ) of Maxwell's equations.
Typical dipole moments for simple diatomic molecules are in the range of 0 to 11 D. Molecules with symmetry point groups or containing inversion symmetry will not have a permanent dipole moment, while highly ionic molecular species have a very large dipole moment, e.g. gas-phase potassium bromide, KBr, with a dipole moment of 10.41 D. [3] A proton and an electron 1 Å apart have a dipole ...
Transition dipole moment, the electrical dipole moment in quantum mechanics; Molecular dipole moment, the electric dipole moment of a molecule. Bond dipole moment, the measure of polarity of a chemical bond; Electron electric dipole moment, the measure of the charge distribution within an electron; Magnetic dipole moment, the measure of the ...
Polarizability is responsible for a material's dielectric constant and, at high (optical) frequencies, its refractive index. The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1]
Definition and higher orders [ edit ] The linear electric polarizability α {\displaystyle \alpha } in isotropic media is defined as the ratio of the induced dipole moment p {\displaystyle \mathbf {p} } of an atom to the electric field E {\displaystyle \mathbf {E} } that produces this dipole moment.
The electron's electric dipole moment (EDM) must be collinear with the direction of the electron's magnetic moment (spin). [1] Within the Standard Model , such a dipole is predicted to be non-zero but very small, at most 10 −38 e ⋅cm , [ 2 ] where e stands for the elementary charge .