Search results
Results from the WOW.Com Content Network
BAG stands for bandwidth allocation gap, this is one of the main features of the AFDX™ protocol. This is the maximum rate data can be sent, and it is guaranteed to be sent at that interval. When setting the BAG rate for each VL, care must be taken so there will be enough bandwidth for other VL's and the total speed cannot exceed 100 Mbit/s.
Bandwidth allocation is the process of assigning radio frequencies to different applications. The radio spectrum is a finite resource, which means there is great need for an effective allocation process.
Transmissions onto an Avionics Full-Duplex Switched Ethernet (AFDX) network are required to be limited to a Bandwidth Allocation Gap (BAG). Conformance to this BAG (and maximum transmission jitter) is then checked in the network switches in a similar way to UPC in ATM networks.
The consumed bandwidth in bit/s, corresponds to achieved throughput or goodput, i.e., the average rate of successful data transfer through a communication path.The consumed bandwidth can be affected by technologies such as bandwidth shaping, bandwidth management, bandwidth throttling, bandwidth cap, bandwidth allocation (for example bandwidth allocation protocol and dynamic bandwidth ...
Dynamic bandwidth allocation is a technique by which traffic bandwidth in a shared telecommunications medium can be allocated on demand and fairly between different users of that bandwidth. [1] This is a form of bandwidth management , and is essentially the same thing as statistical multiplexing .
With both AFDX and TTEthernet, there are additional functions required of the interfaces, e.g. AFDX's Bandwidth Allocation Gap control, and TTEthernet's requirement for very close synchronization of the sources of time-triggered data, that make it difficult to use standard Ethernet interfaces.
Packet switching allows delivery of variable bit rate data streams, realized as sequences of short messages in fixed format, i.e. packets, over a computer network which allocates transmission resources as needed using statistical multiplexing or dynamic bandwidth allocation techniques.
The Rayleigh bandwidth of a simple radar pulse is defined as the inverse of its duration. For example, a one-microsecond pulse has a Rayleigh bandwidth of one megahertz. [1] The essential bandwidth is defined as the portion of a signal spectrum in the frequency domain which contains most of the energy of the signal. [2]