Search results
Results from the WOW.Com Content Network
Examples of substances that are common reducing agents include hydrogen, Carbon monoxide, the alkali metals, formic acid, [1] oxalic acid, [2] and sulfite compounds. In their pre-reaction states, reducers have extra electrons (that is, they are by themselves reduced) and oxidizers lack electrons (that is, they are by themselves oxidized).
The values below are standard apparent reduction potentials (E°') for electro-biochemical half-reactions measured at 25 °C, 1 atmosphere and a pH of 7 in aqueous solution. [1] [2] The actual physiological potential depends on the ratio of the reduced (Red) and oxidized (Ox) forms according to the Nernst equation and the thermal voltage.
In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...
Both the oxidation and reduction steps are pH dependent. Figure 1 shows the standard potentials at pH 0 (strongly acidic) as referenced to the normal hydrogen electrode (NHE). 2 half reactions (at pH = 0) Oxidation 2H 2 O → 4H + + 4e − + O 2 E° = +1.23 V vs. NHE Reduction 4H + + 4e − → 2H 2 E° = 0.00 V vs. NHE
pH values can be measured in non-aqueous solutions, but they are based on a different scale from aqueous pH values, because the standard states used for calculating hydrogen ion concentrations are different. The hydrogen ion activity, a H +, is defined [21] [22] as:
The international pictogram for oxidizing chemicals. Dangerous goods label for oxidizing agents. An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent (called the reductant, reducer, or electron donor).
A redox indicator (also called an oxidation-reduction indicator) is an indicator which undergoes a definite color change at a specific electrode potential. The requirement for fast and reversible color change means that the oxidation-reduction equilibrium for an indicator redox system needs to be established very quickly.
The carbonate buffer system is a series of reactions that uses carbonate as a buffer to convert into bicarbonate. [12] The carbonate buffer reaction helps maintain a constant H+ concentration in the ocean because it consumes hydrogen ions, [13] and thereby maintains a constant pH. [12]