Search results
Results from the WOW.Com Content Network
Oxyhydrogen is a mixture of hydrogen (H 2) and oxygen (O 2) gases. This gaseous mixture is used for torches to process refractory materials and was the first [1] gaseous mixture used for welding. Theoretically, a ratio of 2:1 hydrogen:oxygen is enough to achieve maximum efficiency; in practice a ratio 4:1 or 5:1 is needed to avoid an oxidizing ...
Hydrogen gas released in this way can be used as hydrogen fuel, but must be kept apart from the oxygen as the mixture would be extremely explosive. Separately pressurised into convenient 'tanks' or 'gas bottles', hydrogen can be used for oxyhydrogen welding and other applications, as the hydrogen / oxygen flame can reach approximately 2,800°C.
Liquid hydrogen also has a much higher specific energy than gasoline, natural gas, or diesel. [12] The density of liquid hydrogen is only 70.85 kg/m 3 (at 20 K), a relative density of just 0.07. Although the specific energy is more than twice that of other fuels, this gives it a remarkably low volumetric energy density, many fold lower.
Hydrogen gas is produced by several industrial methods. [1] Nearly all of the world's current supply of hydrogen is created from fossil fuels. [2] [3] Most hydrogen is gray hydrogen made through steam methane reforming. In this process, hydrogen is produced from a chemical reaction between steam and methane, the main
In thermolysis, water molecules split into hydrogen and oxygen. For example, at 2,200 °C (2,470 K; 3,990 °F) about three percent of all H 2 O are dissociated into various combinations of hydrogen and oxygen atoms, mostly H, H 2, O, O 2, and OH. Other reaction products like H 2 O 2 or HO 2 remain minor. At the very high temperature of 3,000 ...
The methane gas reacts in the primary reformer only partially. To increase the hydrogen yield and keep the content of inert components (i. e. methane) as low as possible, the remaining methane gas is converted in a second step with oxygen to hydrogen and carbon monoxide in the secondary reformer.
Combustion of hydrogen with the oxygen in the air. When the bottom cap is removed, allowing air to enter at the bottom, the hydrogen in the container rises out of top and burns as it mixes with the air. Space Shuttle Main Engine burning hydrogen with oxygen, produces a nearly invisible flame at full thrust. Hydrogen gas is highly flammable:
More oxygen may be produced by running the water-gas shift reaction (WGSR) in reverse (RWGS), effectively extracting oxygen from the atmosphere by reducing carbon dioxide to carbon monoxide. Another option is to make more methane than needed and pyrolyze the excess of it into carbon and hydrogen (see above section), where the hydrogen is ...