Search results
Results from the WOW.Com Content Network
The above concept of relation [a] has been generalized to admit relations between members of two different sets (heterogeneous relation, like "lies on" between the set of all points and that of all lines in geometry), relations between three or more sets (finitary relation, like "person x lives in town y at time z "), and relations between ...
The notion of a "many-one" functional relation": Russell first discusses the notion of "identity", then defines a descriptive function (pages 30ff) as the unique value ιx that satisfies the (2-variable) propositional function (i.e., "relation") φลท. N.B. The reader should be warned here that the order of the variables are reversed!
A multivariate function, multivariable function, or function of several variables is a function that depends on several arguments. Such functions are commonly encountered. For example, the position of a car on a road is a function of the time travelled and its average speed.
Combinatorics: The Rota Way has six chapters, densely packed with material: [5] each could be "a basis for a course at the Ph.D. level". [6] Chapter 1, "Sets, functions and relations", also includes material on partially ordered sets, lattice orders, entropy (formulated in terms of partitions of a set), and probability.
Mathematical relations fall into various types according to their specific properties, often as expressed in the axioms or definitions that they satisfy. Many of these types of relations are listed below.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
David Rydeheard and Rod Burstall consider Rel to have objects that are homogeneous relations. For example, A is a set and R ⊆ A × A is a binary relation on A.The morphisms of this category are functions between sets that preserve a relation: Say S ⊆ B × B is a second relation and f: A → B is a function such that () (), then f is a morphism.
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory — as a branch of mathematics — is mostly concerned with those that are relevant to mathematics as a whole.