enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Divide-and-conquer algorithm - Wikipedia

    en.wikipedia.org/wiki/Divide-and-conquer_algorithm

    In computer science, divide and conquer is an algorithm design paradigm. A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem.

  3. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The Karatsuba algorithm is a fast multiplication algorithm. It was discovered by Anatoly Karatsuba in 1960 and published in 1962. [ 1 ] [ 2 ] [ 3 ] It is a divide-and-conquer algorithm that reduces the multiplication of two n -digit numbers to three multiplications of n /2-digit numbers and, by repeating this reduction, to at most n log 2 ⁡ 3 ...

  4. Warnock algorithm - Wikipedia

    en.wikipedia.org/wiki/Warnock_algorithm

    This is a divide and conquer algorithm with run-time of () [dubious – discuss], where n is the number of polygons and p is the number of pixels in the viewport. The inputs are a list of polygons and a viewport. The best case is that if the list of polygons is simple, then draw the polygons in the viewport.

  5. Fast Walsh–Hadamard transform - Wikipedia

    en.wikipedia.org/wiki/Fast_Walsh–Hadamard...

    The FWHT h is a divide-and-conquer algorithm that recursively breaks down a WHT of size into two smaller WHTs of size /. [ 1 ] This implementation follows the recursive definition of the 2 m × 2 m {\displaystyle 2^{m}\times 2^{m}} Hadamard matrix H m {\displaystyle H_{m}} :

  6. Convex hull algorithms - Wikipedia

    en.wikipedia.org/wiki/Convex_hull_algorithms

    Divide and conquer, a.k.a. merge hull — O(n log n) Another O(n log n) algorithm, published in 1977 by Preparata and Hong. This algorithm is also applicable to the three dimensional case. Chan calls this "one of the best illustrations of the power of the divide-and-conquer paradigm". [2] Monotone chain, a.k.a. Andrew's algorithm — O(n log n)

  7. Master theorem (analysis of algorithms) - Wikipedia

    en.wikipedia.org/wiki/Master_theorem_(analysis...

    The master theorem always yields asymptotically tight bounds to recurrences from divide and conquer algorithms that partition an input into smaller subproblems of equal sizes, solve the subproblems recursively, and then combine the subproblem solutions to give a solution to the original problem. The time for such an algorithm can be expressed ...

  8. Quicksort - Wikipedia

    en.wikipedia.org/wiki/Quicksort

    Quicksort is a type of divide-and-conquer algorithm for sorting an array, based on a partitioning routine; the details of this partitioning can vary somewhat, so that quicksort is really a family of closely related algorithms. Applied to a range of at least two elements, partitioning produces a division into two consecutive non empty sub-ranges ...

  9. Divide-and-conquer eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Divide-and-conquer_eigen...

    This technique can be used to improve the efficiency of many eigenvalue algorithms, but it has special significance to divide-and-conquer. For the rest of this article, we will assume the input to the divide-and-conquer algorithm is an real symmetric tridiagonal matrix . The algorithm can be modified for Hermitian matrices.