enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    Goldschmidt's algorithm is an extension of Goldschmidt division, named after Robert Elliot Goldschmidt, [11] [12] which can be used to calculate square roots. Some computers use Goldschmidt's algorithm to simultaneously calculate and /.

  3. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  4. Algorithm - Wikipedia

    en.wikipedia.org/wiki/Algorithm

    Lovelace designed the first algorithm intended for processing on a computer, Babbage's analytical engine, which is the first device considered a real Turing-complete computer instead of just a calculator. Although a full implementation of Babbage's second device was not realized for decades after her lifetime, Lovelace has been called "history ...

  5. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.

  6. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    In mathematics, the Euclidean algorithm, [note 1] or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers, the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his Elements (c. 300 BC).

  7. CORDIC - Wikipedia

    en.wikipedia.org/wiki/CORDIC

    CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...

  8. Integer square root - Wikipedia

    en.wikipedia.org/wiki/Integer_square_root

    The Karatsuba square root algorithm is a fast algorithm for big-integers of "50 to 1,000,000 digits" if Burnikel-Ziegler Karatsuba division and Karatsuba multiplication are used. [2] An example algorithm for 64-bit unsigned integers is below. The algorithm: Normalizes the input inside u64_isqrt.

  9. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.