Search results
Results from the WOW.Com Content Network
Experiments on Plant Hybridization" (German: Versuche über Pflanzen-Hybriden) is a seminal paper written in 1865 and published in 1866 [1] [2] by Gregor Mendel, an Augustinian friar considered to be the founder of modern genetics. The paper was the result after years spent studying genetic traits in Pisum sativum, the pea plant.
After initial experiments with pea plants, Mendel settled on studying seven traits that seemed to be inherited independently of other traits: seed shape, flower color, seed coat tint, pod shape, unripe pod color, flower location, and plant height.
Characteristics Mendel used in his experiments [24] P-Generation and F 1-Generation: The dominant allele for purple-red flower hides the phenotypic effect of the recessive allele for white flowers. F 2 -Generation: The recessive trait from the P-Generation phenotypically reappears in the individuals that are homozygous with the recessive ...
Gregor Mendel, the Father of Genetics William Bateson Ronald Fisher. Particulate inheritance is a pattern of inheritance discovered by Mendelian genetics theorists, such as William Bateson, Ronald Fisher or Gregor Mendel himself, showing that phenotypic traits can be passed from generation to generation through "discrete particles" known as genes, which can keep their ability to be expressed ...
Between 1856 and 1865, Gregor Mendel conducted breeding experiments using the pea plant Pisum sativum and traced the inheritance patterns of certain traits. Through these experiments, Mendel saw that the genotypes and phenotypes of the progeny were predictable and that some traits were dominant over others. [ 11 ]
Gregor Mendel's experiments with plant hybridization led to his laws of inheritance. This work became well known in the 1900s and formed the basis of the new science of genetics, which stimulated research by many plant scientists dedicated to improving crop production through plant breeding.
The traits observed in this cross are the same traits that Mendel was observing for his experiments. This cross results in the expected phenotypic ratio of 9:3:3:1. Another example is listed in the table below and illustrates the process of a dihybrid cross between pea plants with multiple traits and their phenotypic ratio patterns.
The first uses of test crosses were in Gregor Mendel’s experiments in plant hybridization.While studying the inheritance of dominant and recessive traits in pea plants, he explains that the “signification” (now termed zygosity) of an individual for a dominant trait is determined by the expression patterns of the following generation.