Search results
Results from the WOW.Com Content Network
Only 13 of the 38 known-but-unstable elements have isotopes with a half-life of at least 100 years. Every known isotope of the remaining 25 elements is highly radioactive; these are used in academic research and sometimes in industry and medicine.
The unstable (radioactive) isotopes are either primordial or postprimordial. Primordial isotopes were a product of stellar nucleosynthesis or another type of nucleosynthesis such as cosmic ray spallation, and have persisted down to the present because their rate of decay is very slow (e.g. uranium-238 and potassium-40).
A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable.
Graph of nuclides (isotopes) by type of decay. Orange and blue nuclides are unstable, with the black squares between these regions representing stable nuclides. The continuous line passing below most of the nuclides comprises the positions on the graph of the (mostly hypothetical) nuclides for which proton number would be the same as neutron ...
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds. [1]
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay.
According to Byrne, [3] stable nuclides are defined as those having a half-life greater than 10 18 years, and there are many combinations of protons and neutrons that form nuclides that are unstable. A common example of an unstable nuclide is carbon-14 that decays by beta decay into nitrogen-14 with a half-life of about 5,730 years: 14 6 C → ...
See Isotope#Notation for an explanation of the notation used for different nuclide or isotope types. Nuclear isomers are members of a set of nuclides with equal proton number and equal mass number (thus making them by definition the same isotope), but different states of excitation. An example is the two states of the single isotope 99 43 Tc