enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uracil - Wikipedia

    en.wikipedia.org/wiki/Uracil

    Because 5-fluorouracil is similar in shape to, but does not undergo the same chemistry as, uracil, the drug inhibits RNA transcription enzymes, thereby blocking RNA synthesis and stopping the growth of cancerous cells. [2] Uracil can also be used in the synthesis of caffeine. [27] Uracil has also shown potential as a HIV viral capsid inhibitor ...

  3. Nucleic acid - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid

    Nucleic acid types differ in the structure of the sugar in their nucleotides–DNA contains 2'-deoxyribose while RNA contains ribose (where the only difference is the presence of a hydroxyl group). Also, the nucleobases found in the two nucleic acid types are different: adenine , cytosine , and guanine are found in both RNA and DNA, while ...

  4. Pseudouridine - Wikipedia

    en.wikipedia.org/wiki/Pseudouridine

    Pseudouridine is the most abundant RNA modification in cellular RNA [2] and one of over 100 chemically distinct modifications that may affect translation or other functions of RNA. Pseudouridine is the C5- glycoside isomer of uridine that contains a C-C bond between C1 of the ribose sugar and C5 of uracil , rather than usual C1-N1 bond found in ...

  5. Ribonucleotide - Wikipedia

    en.wikipedia.org/wiki/Ribonucleotide

    The general structure of a ribonucleotide consists of a phosphate group, a ribose sugar group, and a nucleobase, in which the nucleobase can either be adenine, guanine, cytosine, or uracil. Without the phosphate group, the composition of the nucleobase and sugar is known as a nucleoside.

  6. Nucleotide base - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_base

    They function as the fundamental units of the genetic code, with the bases A, G, C, and T being found in DNA while A, G, C, and U are found in RNA. Thymine and uracil are distinguished by merely the presence or absence of a methyl group on the fifth carbon (C5) of these heterocyclic six-membered rings.

  7. RNA - Wikipedia

    en.wikipedia.org/wiki/RNA

    Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyribonucleic acid (DNA) are nucleic acids.

  8. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    Pseudoknots are functional elements in RNA structure having diverse function and found in most classes of RNA. Secondary structure of RNA can be predicted by experimental data on the secondary structure elements, helices, loops, and bulges. DotKnot-PW method is used for comparative pseudoknots prediction.

  9. Tetraloop - Wikipedia

    en.wikipedia.org/wiki/Tetraloop

    Three types of tetraloops are common in ribosomal RNA: GNRA, UNCG and CUUG, in which the N could be either uracil, adenine, cytosine, or guanine, and the R is either guanine or adenine. These three sequences form stable and conserved tetraloops that play an important role in structural stability and biological function of 16S rRNA. [9] GNRA