enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.

  3. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    If is added to , the complex number is not changed, but this adds / to the argument of the n th root, and provides a new n th root. This can be done n times, and provides the n n th roots of the complex number. It is usual to choose one of the n n th root as the principal root.

  4. De Moivre's formula - Wikipedia

    en.wikipedia.org/wiki/De_Moivre's_formula

    A modest extension of the version of de Moivre's formula given in this article can be used to find the n-th roots of a complex number for a non-zero integer n. (This is equivalent to raising to a power of 1 / n). If z is a complex number, written in polar form as = (⁡ + ⁡),

  5. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    Every non-zero number x, real or complex, has n different complex number nth roots. (In the case x is real, this count includes any real nth roots.) The only complex root of 0 is 0. The nth roots of almost all numbers (all integers except the nth powers, and all rationals except the quotients of two nth powers) are irrational. For example,

  6. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory , the theory of group characters , and the discrete Fourier transform .

  7. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}

  8. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Typically, R is the ring of the integers, the field of fractions is the field of the rational numbers and the algebraically closed field is the field of the complex numbers. Vieta's formulas are then useful because they provide relations between the roots without having to compute them.

  9. Imaginary number - Wikipedia

    en.wikipedia.org/wiki/Imaginary_number

    An illustration of the complex plane. The imaginary numbers are on the vertical coordinate axis. Although the Greek mathematician and engineer Heron of Alexandria is noted as the first to present a calculation involving the square root of a negative number, [6] [7] it was Rafael Bombelli who first set down the rules for multiplication of complex numbers in 1572.