Search results
Results from the WOW.Com Content Network
An endosymbiont or endobiont [1] is an organism that lives within the body or cells of another organism. Typically the two organisms are in a mutualistic relationship. Examples are nitrogen-fixing bacteria (called rhizobia ), which live in the root nodules of legumes , single-cell algae inside reef-building corals , and bacterial endosymbionts ...
There is evidence that plants and endophytes engage in communication with each other that can aid symbiosis. For example, plant chemical signals have been shown to activate gene expression in endophytes. One example of this plant-endosymbiont interaction occurs between dicotyledonous plants in the Convolvulaceae and clavicipitaceous fungi.
Consortia are commonly found in humans, with the predominant examples being the skin consortium and the intestinal consortium which provide protection and aid in human nutrition. Additionally, bacteria have been identified as existing within the brain (previously believed to be sterile), with metagenomic evidence suggesting the species found ...
Fungal-bacterial endosymbiosis encompasses the mutualistic relationship between a fungus and intracellular bacteria species residing within the fungus. Many examples of endosymbiotic relationships between bacteria and plants, algae and insects exist and have been well characterized, however fungal-bacteria endosymbiosis has been less well described.
Reductive evolution is the process by which microorganisms remove genes from their genome.It can occur when bacteria found in a free-living state enter a restrictive state (either as endosymbionts or parasites) or are completely absorbed by another organism becoming intracellular (symbiogenesis).
As the endosymbiont adapts to the host's lifestyle, the endosymbiont changes dramatically. There is a drastic reduction in its genome size, as many genes are lost during the process of metabolism , and DNA repair and recombination, while important genes participating in the DNA-to-RNA transcription , protein translation and DNA/RNA replication ...
Furthermore, simplifications can also enable other macroevolutionary complexifications (e.g. the bacterial endosymbiont that simplified into the integrated mitochondrial organelle). Thus, incorporating simplification dynamics will help further elucidate the emergence of life's lineages. [12]
The bacterial endosymbiont is inside its body and is surrounded by two cell membranes typical of Gram-negative bacteria, but its cell membrane presents unusual features, such as the presence of phosphatidylcholine, a major membrane lipid (atypical of bacterial membranes), and the highly reduced peptidoglycan layer, which shows reduced or ...