enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cyclic number (group theory) - Wikipedia

    en.wikipedia.org/wiki/Cyclic_number_(group_theory)

    A cyclic number [1] [2] is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic. [3] Any prime number is clearly cyclic. All cyclic numbers are square-free. [4] Let n = p 1 p 2 …

  3. Circular prime - Wikipedia

    en.wikipedia.org/wiki/Circular_prime

    A circular prime is a prime number with the property that the number generated at each intermediate step when cyclically permuting its (base 10) digits will be prime. [1] [2] For example, 1193 is a circular prime, since 1931, 9311 and 3119 all are also prime. [3]

  4. Cyclic number - Wikipedia

    en.wikipedia.org/wiki/Cyclic_number

    Cyclic numbers are related to the recurring digital representations of unit fractions. A cyclic number of length L is the digital representation of 1/(L + 1). Conversely, if the digital period of 1/p (where p is prime) is p − 1, then the digits represent a cyclic number. For example: 1/7 = 0.142857 142857...

  5. Cyclic group - Wikipedia

    en.wikipedia.org/wiki/Cyclic_group

    If p is a prime number, then any group with p elements is isomorphic to the simple group Z/pZ. A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n, φ(n)) = 1. [13] The sequence of cyclic numbers include all primes, but some are composite such as 15. However, all cyclic numbers are odd ...

  6. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    A circular prime number is a number that remains prime on any cyclic rotation of its digits (in base 10). ... All prime numbers from 31 to 6,469,693,189 for free ...

  7. Full reptend prime - Wikipedia

    en.wikipedia.org/wiki/Full_reptend_prime

    The cyclic number corresponding to prime p will possess p − 1 digits if and only if p is a full reptend prime. That is, the multiplicative order ord p b = p − 1, which is equivalent to b being a primitive root modulo p. The term "long prime" was used by John Conway and Richard Guy in their Book of Numbers.

  8. 142857 - Wikipedia

    en.wikipedia.org/wiki/142857

    142,857 is the natural number following 142,856 and preceding 142,858. It is a Kaprekar number. [1]142857, the six repeating digits of ⁠ 1 / 7 ⁠ (0. 142857), is the best-known cyclic number in base 10.

  9. Reciprocals of primes - Wikipedia

    en.wikipedia.org/wiki/Reciprocals_of_primes

    A full reptend prime, full repetend prime, proper prime [7]: 166 or long prime in base b is an odd prime number p such that the Fermat quotient = (where p does not divide b) gives a cyclic number with p − 1 digits.