enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [ 1 ] Generally, if the function sin ⁡ x {\displaystyle \sin x} is any trigonometric function, and cos ⁡ x {\displaystyle \cos x} is its derivative,

  3. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    At this point we can either integrate directly, or we can first change the integrand to 2 cos 6x − 4 cos 4x + 2 cos 2x and continue from there. Either method gives Either method gives ∫ sin 2 ⁡ x cos ⁡ 4 x d x = − 1 24 sin ⁡ 6 x + 1 8 sin ⁡ 4 x − 1 8 sin2 x + C . {\displaystyle \int \sin ^{2}x\cos 4x\,dx=-{\frac {1}{24 ...

  4. Trigonometric integral - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_integral

    Since sinc is an even entire function (holomorphic over the entire complex plane), Si is entire, odd, and the integral in its definition can be taken along any path connecting the endpoints. By definition, Si(x) is the antiderivative of sin x / x whose value is zero at x = 0, and si(x) is the antiderivative whose value is zero at x = ∞.

  5. Wallis' integrals - Wikipedia

    en.wikipedia.org/wiki/Wallis'_integrals

    Euler integral of the second kind: the Gamma function: Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t {\displaystyle \Gamma (z)=\int _{0}^{\infty }t^{z-1}e^{-t}\,dt} for Re( z ) > 0 . If we make the following substitution inside the Beta function: { t = sin 2 ⁡ u 1 − t = cos 2 ⁡ u d t = 2 sin ⁡ u cos ⁡ u d u , {\displaystyle \quad \left ...

  6. List of definite integrals - Wikipedia

    en.wikipedia.org/wiki/List_of_definite_integrals

    In mathematics, the definite integral ∫ a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx} is the area of the region in the xy -plane bounded by the graph of f , the x -axis, and the lines x = a and x = b , such that area above the x -axis adds to the total, and that below the x -axis subtracts from the total.

  7. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Then | | = ⁡ (()) +, where sgn(x) is the sign function, which takes the values −1, 0, 1 when x is respectively negative, zero or positive. This can be proved by computing the derivative of the right-hand side of the formula, taking into account that the condition on g is here for insuring the continuity of the integral.

  8. Trigonometric substitution - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_substitution

    For a definite integral, one must figure out how the bounds of integration change. For example, as x {\displaystyle x} goes from 0 {\displaystyle 0} to a / 2 , {\displaystyle a/2,} then sin ⁡ θ {\displaystyle \sin \theta } goes from 0 {\displaystyle 0} to 1 / 2 , {\displaystyle 1/2,} so θ {\displaystyle \theta } goes from 0 {\displaystyle 0 ...

  9. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.