Search results
Results from the WOW.Com Content Network
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...
CATIA (/ k ə ˈ t iː ə /, an acronym of computer-aided three-dimensional interactive application) is a multi-platform software suite for computer-aided design (CAD), computer-aided manufacturing (CAM), computer-aided engineering (CAE), 3D modeling and product lifecycle management (PLM), developed by the French company Dassault Systèmes.
For curves embedded in 3D surfaces the offset may be taken along a geodesic. [25] Another way to generalize it is (even in 2D) to consider a variable distance, e.g. parametrized by another curve. [22] One can for example stroke (envelope) with an ellipse instead of circle [22] as it is possible for example in METAFONT. [26]
The distance from the axis may be called the radial distance or radius, while the angular coordinate is sometimes referred to as the angular position or as the azimuth. The radius and the azimuth are together called the polar coordinates , as they correspond to a two-dimensional polar coordinate system in the plane through the point, parallel ...
In physics, circular motion is movement of an object along the circumference of a circle or rotation along a circular arc. It can be uniform, with a constant rate of rotation and constant tangential speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves the circular motion ...
The tangent lines must be equal in length for any point on the radical axis: | | = | |. If P, T 1, T 2 lie on a common tangent, then P is the midpoint of ¯.. In Euclidean geometry, the radical axis of two non-concentric circles is the set of points whose power with respect to the circles are equal.
A Dirac measure δ a supported at any point a has zero curvature. If μ is any measure whose support is contained within a Euclidean line L, then μ has zero curvature. For example, one-dimensional Lebesgue measure on any line (or line segment) has zero curvature. The Lebesgue measure defined on all of R 2 has infinite curvature.
Consider a circle in with center at the origin and radius . Gauss's circle problem asks how many points there are inside this circle of the form ( m , n ) {\displaystyle (m,n)} where m {\displaystyle m} and n {\displaystyle n} are both integers.