Search results
Results from the WOW.Com Content Network
An electromagnetic wave propagating along a path C has the phase shift over C as if it was propagating a path in a vacuum, length of which, is equal to the optical path length of C. Thus, if a wave is traveling through several different media, then the optical path length of each medium can be added to find the total optical path length. The ...
The transfer-matrix method is a method used in optics and acoustics to analyze the propagation of electromagnetic or acoustic waves through a stratified medium; a stack of thin films. [ 1 ] [ 2 ] This is, for example, relevant for the design of anti-reflective coatings and dielectric mirrors .
Fermat's principle is most familiar, however, in the case of visible light: it is the link between geometrical optics, which describes certain optical phenomena in terms of rays, and the wave theory of light, which explains the same phenomena on the hypothesis that light consists of waves.
In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy , who originally defined it in 1830 in his article "The refraction and reflection of light".
As one example, if there is free space between the two planes, the ray transfer matrix is given by: = [], where d is the separation distance (measured along the optical axis) between the two reference planes.
Coupled mode theory first arose in the 1950s in the works of Miller on microwave transmission lines, [1] Pierce on electron beams, [2] and Gould on backward wave oscillators. [3] This put in place the mathematical foundations for the modern formulation expressed by H. A. Haus et al. for optical waveguides.
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Poynting vector: S, N = = W m −2 [M][T] −3 Poynting flux, EM field power flow Φ S, Φ N = W
In electromagnetics, especially in optics, beam divergence is an angular measure of the increase in beam diameter or radius with distance from the optical aperture or antenna aperture from which the beam emerges. The term is relevant only in the "far field", away from any focus of the beam. Practically speaking, however, the far field can ...