Search results
Results from the WOW.Com Content Network
The alkoxide ion is a strong base so the proton is transferred from the carboxylic acid to the alkoxide ion, creating an alcohol: saponification part III. In a classic laboratory procedure, the triglyceride trimyristin is obtained by extracting it from nutmeg with diethyl ether. Saponification to the soap sodium myristate takes place using NaOH ...
When iodine and sodium hydroxide are used as the reagents a positive reaction gives iodoform, which is a solid at room temperature and tends to precipitate out of solution causing a distinctive cloudiness. In organic chemistry, this reaction may be used to convert a terminal methyl ketone into the analogous carboxylic acid.
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Subsequent halogenation (which usually cannot be stopped by control of stoichiometry) occurs at the position which already has a halogen substituent, until all hydrogens have been replaced by halogen atoms. For methyl alkyl ketones (2-alkanones), the haloform reaction proceeds to give the carboxylic acid selectively. [2]
Acyl chlorides are used to prepare acid anhydrides, amides and esters, by reacting acid chlorides with: a salt of a carboxylic acid, an amine, or an alcohol, respectively. Acid halides are the most reactive acyl derivatives, and can easily be converted into any of the others. Acid halides will react with carboxylic acids to form anhydrides.
As an example, electrolysis of acetic acid yields ethane and carbon dioxide: CH 3 COOH → CH 3 COO − → CH 3 COO· → CH 3 · + CO 2 2CH 3 · → CH 3 CH 3. Another example is the synthesis of 2,7-dimethyl-2,7-dinitrooctane from 4-methyl-4-nitrovaleric acid: [3] The Kolbe reaction has also been occasionally used in cross-coupling reactions.
Adding boric acid to the acid-catalyzed reaction mixture increases the yield of phenol product over phenyl carboxylic acid product, even when using phenyl aldehyde or ketone reactants with electron-donating groups meta to the carbonyl group or electron-withdrawing groups ortho or para to the carbonyl group. Boric acid and hydrogen peroxide form ...
The acyl azide is usually made from the reaction of acid chlorides or anhydrides [6] with sodium azide [7] or trimethylsilyl azide. [8] Acyl azides are also obtained from treating acylhydrazines with nitrous acid. [9] Alternatively, the acyl azide can be formed by the direct reaction of a carboxylic acid with diphenylphosphoryl azide (DPPA ...