Search results
Results from the WOW.Com Content Network
Electronegativity is not a uniquely defined property and may depend on the definition. The suggested values are all taken from WebElements as a consistent set. Many of the highly radioactive elements have values that must be predictions or extrapolations, but are unfortunately not marked as such.
It is to be expected that the electronegativity of an element will vary with its chemical environment, [7] but it is usually considered to be a transferable property, that is to say that similar values will be valid in a variety of situations. Caesium is the least electronegative element (0.79); fluorine is the most (3.98).
This is another reason for the high chemical stability of polyfluorinated compounds. Fluorine has the highest electronegativity of all elements: 3.98. [1] This causes the high dipole moment of C-F bond (1.41 D [1]). Fluorine has the lowest polarizability of all atoms: 0.56 10 −24 cm 3. [1]
Perfluoroalkanes are very stable because of the strength of the carbon–fluorine bond, one of the strongest in organic chemistry. [4] Its strength is a result of the electronegativity of fluorine imparting partial ionic character through partial charges on the carbon and fluorine atoms, which shorten and strengthen the bond (compared to carbon-hydrogen bonds) through favorable covalent ...
Fluorine is the thirteenth most abundant element on Earth and the 24th most abundant element in the universe. It is the most electronegative element and it is highly reactive. Thus, it is rarely found in its elemental state, although elemental fluorine has been identified in certain geochemical contexts. [ 3 ]
Recently, [when?] xenon has been shown to produce a wide variety of compounds of the type XeO n X 2 where n is 1, 2 or 3 and X is any electronegative group, such as CF 3, C(SO 2 CF 3) 3, N(SO 2 F) 2, N(SO 2 CF 3) 2, OTeF 5, O(IO 2 F 2), etc.; the range of compounds is impressive, similar to that seen with the neighbouring element iodine ...
Oxygen is the most electronegative element except for fluorine, and forms compounds with almost all of the chemical elements, including some of the noble gases. It commonly bonds with many metals and metalloids to form oxides, including iron oxide, titanium oxide, and silicon oxide.
Xenon has a high ionisation energy (1170.4 kJ/mol), low electron affinity (estimated at −80 kJ/mol), and high electronegativity (2.582 χSpec). It forms a relatively large number of compounds, mostly containing fluorine or oxygen. An unusual ion containing xenon is the tetraxenonogold(II) cation, AuXe 2+