enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of roughness of the pipe to the ...

  3. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    S foot of water per foot of pipe; P d = pressure drop over the length of pipe in psig (pounds per square inch gauge pressure) L = length of pipe in feet; Q = flow, gpm (gallons per minute) C = pipe roughness coefficient; d = inside pipe diameter, in (inches) Note: Caution with U S Customary Units is advised. The equation for head loss in pipes ...

  4. Entrance length (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Entrance_length_(fluid...

    In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer.

  5. Friction loss - Wikipedia

    en.wikipedia.org/wiki/Friction_loss

    The difference in the character of the flow from the case of water in a pipe stems from the differing Reynolds number Re and the roughness of the duct. The friction loss is customarily given as pressure loss for a given duct length, Δ p / L , in units of (US) inches of water for 100 feet or (SI) kg / m 2 / s 2 .

  6. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...

  7. Pipe flow - Wikipedia

    en.wikipedia.org/wiki/Pipe_flow

    The exception to this is when a storm sewer operates at full capacity, and then can become pipe flow. Energy in pipe flow is expressed as head and is defined by the Bernoulli equation. In order to conceptualize head along the course of flow within a pipe, diagrams often contain a hydraulic grade line (HGL). Pipe flow is subject to frictional ...

  8. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    SG is the specific gravity of the fluid (for water = 1), ΔP is the pressure drop across the valve (expressed in psi). In more practical terms, the flow coefficient C v is the volume (in US gallons) of water at 60 °F (16 °C) that will flow per minute through a valve with a pressure drop of 1 psi (6.9 kPa) across the valve.

  9. Fanning friction factor - Wikipedia

    en.wikipedia.org/wiki/Fanning_friction_factor

    From the chart, it is evident that the friction factor is never zero, even for smooth pipes because of some roughness at the microscopic level. The friction factor for laminar flow of Newtonian fluids in round tubes is often taken to be: [4] = [5] [2] where Re is the Reynolds number of the flow.