enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadratic variation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_variation

    The quadratic variation exists for all continuous finite variation processes, and is zero. This statement can be generalized to non-continuous processes. Any càdlàg finite variation process X {\displaystyle X} has quadratic variation equal to the sum of the squares of the jumps of X {\displaystyle X} .

  3. Wiener process - Wikipedia

    en.wikipedia.org/wiki/Wiener_process

    An alternative characterisation of the Wiener process is the so-called Lévy characterisation that says that the Wiener process is an almost surely continuous martingale with W 0 = 0 and quadratic variation [W t, W t] = t (which means that W t 2 − t is also a martingale).

  4. Girsanov theorem - Wikipedia

    en.wikipedia.org/wiki/Girsanov_theorem

    Visualisation of the Girsanov theorem. The left side shows a Wiener process with negative drift under a canonical measure P; on the right side each path of the process is colored according to its likelihood under the martingale measure Q. The density transformation from P to Q is given by the Girsanov theorem.

  5. Local time (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Local_time_(mathematics)

    where is the Dirac delta function and [] is the quadratic variation. It is a notion invented by Paul Lévy . The basic idea is that L x ( t ) {\displaystyle L^{x}(t)} is an (appropriately rescaled and time-parametrized) measure of how much time B s {\displaystyle B_{s}} has spent at x {\displaystyle x} up to time t {\displaystyle t} .

  6. Martingale (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(probability...

    A convex function of a martingale is a submartingale, by Jensen's inequality. For example, the square of the gambler's fortune in the fair coin game is a submartingale (which also follows from the fact that X n 2 − n is a martingale). Similarly, a concave function of a martingale is a supermartingale.

  7. Doléans-Dade exponential - Wikipedia

    en.wikipedia.org/wiki/Doléans-Dade_exponential

    Stochastic exponential of a local martingale is again a local martingale. All the formulae and properties above apply also to stochastic exponential of a complex -valued X {\displaystyle X} . This has application in the theory of conformal martingales and in the calculation of characteristic functions.

  8. Itô's lemma - Wikipedia

    en.wikipedia.org/wiki/Itô's_lemma

    Hans Föllmer provided a non-probabilistic proof of the Itô formula and showed that it holds for all functions with finite quadratic variation. [ 3 ] Let f ∈ C 2 {\displaystyle f\in C^{2}} be a real-valued function and x : [ 0 , ∞ ] → R {\displaystyle x:[0,\infty ]\to \mathbb {R} } a right-continuous function with left limits and finite ...

  9. Martingale representation theorem - Wikipedia

    en.wikipedia.org/wiki/Martingale_representation...

    The martingale representation theorem can be used to establish the existence of a hedging strategy. Suppose that ( M t ) 0 ≤ t < ∞ {\displaystyle \left(M_{t}\right)_{0\leq t<\infty }} is a Q-martingale process, whose volatility σ t {\displaystyle \sigma _{t}} is always non-zero.