enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Damping capacity - Wikipedia

    en.wikipedia.org/wiki/Damping_capacity

    Damping capacity is a mechanical property of materials that measure a material's ability to dissipate elastic strain energy during mechanical vibration or wave propagation. When ranked according to damping capacity, materials may be roughly categorized as either high- or low-damping.

  3. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  4. Damping - Wikipedia

    en.wikipedia.org/wiki/Damping

    The damping ratio provides a mathematical means of expressing the level of damping in a system relative to critical damping. For a damped harmonic oscillator with mass m , damping coefficient c , and spring constant k , it can be defined as the ratio of the damping coefficient in the system's differential equation to the critical damping ...

  5. Dynamic modulus - Wikipedia

    en.wikipedia.org/wiki/Dynamic_modulus

    The ratio of the loss modulus to storage modulus in a viscoelastic material is defined as the ⁡, (cf. loss tangent), which provides a measure of damping in the material. tan ⁡ δ {\displaystyle \tan \delta } can also be visualized as the tangent of the phase angle ( δ {\displaystyle \delta } ) between the storage and loss modulus.

  6. Acoustic attenuation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_attenuation

    Acoustic attenuation in many metals and crystalline materials is frequency-independent, namely =. [10] In contrast, it is widely noted that the η {\displaystyle \eta } of viscoelastic materials is between 0 and 2.

  7. Mass-spring-damper model - Wikipedia

    en.wikipedia.org/wiki/Mass-spring-damper_model

    Classic model used for deriving the equations of a mass spring damper model. The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers.

  8. Shock response spectrum - Wikipedia

    en.wikipedia.org/wiki/Shock_response_spectrum

    Calculate (by direct time-domain simulation) the maximum instantaneous absolute acceleration experienced by the mass element of your SDOF at any time during (or after) exposure to the shock in question. This acceleration is a; Draw a dot at (f,a); Repeat steps 2–4 for many other values of f, and connect all the dots together into a smooth curve.

  9. Impulse excitation technique - Wikipedia

    en.wikipedia.org/wiki/Impulse_excitation_technique

    The impulse excitation technique (IET) is a non-destructive material characterization technique to determine the elastic properties and internal friction of a material of interest. [1] It measures the resonant frequencies in order to calculate the Young's modulus , shear modulus , Poisson's ratio and internal friction of predefined shapes like ...