enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermal equilibrium - Wikipedia

    en.wikipedia.org/wiki/Thermal_equilibrium

    Development of a thermal equilibrium in a closed system over time through a heat flow that levels out temperature differences. Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A ...

  3. Thermodynamic state - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_state

    A few different types of equilibrium are listed below. Thermal equilibrium: When the temperature throughout a system is uniform, the system is in thermal equilibrium. Mechanical equilibrium: If at every point within a given system there is no change in pressure with time, and there is no movement of material, the system is in mechanical ...

  4. Thermal velocity - Wikipedia

    en.wikipedia.org/wiki/Thermal_velocity

    Thus, indirectly, thermal velocity is a measure of temperature. Technically speaking, it is a measure of the width of the peak in the Maxwell–Boltzmann particle velocity distribution . Note that in the strictest sense thermal velocity is not a velocity , since velocity usually describes a vector rather than simply a scalar speed .

  5. Thermodynamic temperature - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_temperature

    Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics.. Historically, thermodynamic temperature was defined by Lord Kelvin in terms of a macroscopic relation between thermodynamic work and heat transfer as defined in thermodynamics, but the kelvin was redefined by international agreement in 2019 in terms of phenomena that are ...

  6. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The behavior of a thermodynamic system is summarized in the laws of Thermodynamics, which concisely are: . Zeroth law of thermodynamics; If A, B, C are thermodynamic systems such that A is in thermal equilibrium with B and B is in thermal equilibrium with C, then A is in thermal equilibrium with C.

  7. Zeroth law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Zeroth_law_of_thermodynamics

    Thus, the two systems are in thermal equilibrium with each other, or they are in mutual equilibrium. Another consequence of equivalence is that thermal equilibrium is described as a transitive relation: [7]: 56 [10] If A is in thermal equilibrium with B and if B is in thermal equilibrium with C, then A is in thermal equilibrium with C.

  8. Maxwell–Boltzmann statistics - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann_statistics

    In statistical mechanics, Maxwell–Boltzmann statistics describes the distribution of classical material particles over various energy states in thermal equilibrium. It is applicable when the temperature is high enough or the particle density is low enough to render quantum effects negligible.

  9. Helmholtz free energy - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_free_energy

    Since the system is in thermal equilibrium with the heat bath in the initial and the final states, T is also the temperature of the system in these states. The fact that the system's temperature does not change allows us to express the numerator as the free energy change of the system: