Search results
Results from the WOW.Com Content Network
Similarly, the empty space is the unique initial object in Top, the category of topological spaces and every one-point space is a terminal object in this category. In the category Rel of sets and relations, the empty set is the unique initial object, the unique terminal object, and hence the unique zero object. Morphisms of pointed sets.
If A is an object of C, then the functor from C to Set that sends X to Hom C (X,A) (the set of morphisms in C from X to A) is an example of such a functor. If C is a small category (i.e. the collection of its objects forms a set), then the contravariant functors from C to Set, together with natural transformations as morphisms, form a new ...
The empty set can be turned into a topological space, called the empty space, in just one way: by defining the empty set to be open. This empty topological space is the unique initial object in the category of topological spaces with continuous maps. In fact, it is a strict initial object: only the empty set has a function to the empty set.
The object pool design pattern is used in several places in the standard classes of the .NET Framework. One example is the .NET Framework Data Provider for SQL Server. As SQL Server database connections can be slow to create, a pool of connections is maintained. Closing a connection does not actually relinquish the link to SQL Server.
In object-oriented computer programming, a null object is an object with no referenced value or with defined neutral (null) behavior.The null object design pattern, which describes the uses of such objects and their behavior (or lack thereof), was first published as "Void Value" [1] and later in the Pattern Languages of Program Design book series as "Null Object".
Suppose C is a category, and f : X → Y is a morphism in C. The morphism f is called a constant morphism (or sometimes left zero morphism) if for any object W in C and any g, h : W → X, fg = fh. Dually, f is called a coconstant morphism (or sometimes right zero morphism) if for any object Z in C and any g, h : Y → Z, gf = hf.
The terminal object is the terminal category or trivial category 1 with a single object and morphism. [2] The category Cat is itself a large category, and therefore not an object of itself. In order to avoid problems analogous to Russell's paradox one cannot form the “category of all categories”.
In example 4), the null object must be referring to the matrix clause subject [Zhangsan] but not the embedded subject [Lisi], since condition C of the Binding Theory states that it must be free. (Square brackets indicate that an element is covert (not pronounced), as in the second English translation.) [ 17 ]