Search results
Results from the WOW.Com Content Network
A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus, known as beta decay. There are two forms of beta decay, β − decay and β + decay, which produce electrons and positrons, respectively.
In dosimetry, linear energy transfer (LET) is the amount of energy that an ionizing particle transfers to the material traversed per unit distance. It describes the action of radiation into matter. It is identical to the retarding force acting on a charged ionizing particle travelling through the matter. [1] By definition, LET is a positive ...
An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
The two types of beta decay are known as beta minus and beta plus.In beta minus (β −) decay, a neutron is converted to a proton, and the process creates an electron and an electron antineutrino; while in beta plus (β +) decay, a proton is converted to a neutron and the process creates a positron and an electron neutrino. β + decay is also known as positron emission.
A common example of an unstable nuclide is carbon-14 that decays by beta decay into nitrogen-14 with a half-life of about 5,730 years: 14 6 C → 14 7 N + e − + ν e. In this form of decay, the original element becomes a new chemical element in a process known as nuclear transmutation and a beta particle and an electron antineutrino are emitted.
The Feynman diagram for beta-minus decay of a neutron (n = udd) into a proton (p = udu), electron (e −), and electron anti-neutrino ν e, via a charged vector boson (W −). In one type of charged current interaction, a charged lepton (such as an electron or a muon, having a charge of −1) can absorb a W +
As an example, self-exchange describes the degenerate reaction between permanganate and its one-electron reduced relative manganate: [MnO 4] − + [Mn*O 4] 2− → [MnO 4] 2− + [Mn*O 4] −. In general, if electron transfer is faster than ligand substitution, the reaction will follow the outer-sphere electron transfer route.
Since an electron is lost from the atom, a hole appears in an electron aura which is subsequently filled by other electrons that descend to the empty, yet lower energy level, and in the process emit characteristic X-ray(s), Auger electron(s), or both. The atom thus emits high-energy electrons and X-ray photons, none of which originate in that ...