enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    Here, the electric field outside (r > R) and inside (r < R) of a charged sphere is being calculated (see Wikiversity). In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem, and it relates the ...

  3. Gauss's law for gravity - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law_for_gravity

    Gauss's law for gravity. In physics, Gauss's law for gravity, also known as Gauss's flux theorem for gravity, is a law of physics that is equivalent to Newton's law of universal gravitation. It is named after Carl Friedrich Gauss. It states that the flux (surface integral) of the gravitational field over any closed surface is proportional to ...

  4. Gaussian surface - Wikipedia

    en.wikipedia.org/wiki/Gaussian_surface

    A Gaussian surface is a closed surface in three-dimensional space through which the flux of a vector field is calculated; usually the gravitational field, electric field, or magnetic field. [1] It is an arbitrary closed surface S = ∂V (the boundary of a 3-dimensional region V) used in conjunction with Gauss's law for the corresponding field ...

  5. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such ...

  6. Magnetostatics - Wikipedia

    en.wikipedia.org/wiki/Magnetostatics

    Magnetostatics is the study of magnetic fields in systems where the currents are steady (not changing with time). It is the magnetic analogue of electrostatics, where the charges are stationary. The magnetization need not be static; the equations of magnetostatics can be used to predict fast magnetic switching events that occur on time scales ...

  7. Gauss's law for magnetism - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law_for_magnetism

    In physics, Gauss's law for magnetism is one of the four Maxwell's equations that underlie classical electrodynamics. It states that the magnetic field B has divergence equal to zero, [1] in other words, that it is a solenoidal vector field. It is equivalent to the statement that magnetic monopoles do not exist. [2]

  8. Shell theorem - Wikipedia

    en.wikipedia.org/wiki/Shell_theorem

    The shell theorem is an immediate consequence of Gauss's law for gravity saying that ∫ S g ⋅ d S = − 4 π G M {\displaystyle \int _{S}{\mathbf {g} }\cdot \,d{\mathbf {S} }=-4\pi GM} where M is the mass of the part of the spherically symmetric mass distribution that is inside the sphere with radius r and

  9. Divergence theorem - Wikipedia

    en.wikipedia.org/wiki/Divergence_theorem

    In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, [1] is a theorem relating the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed. More precisely, the divergence theorem states that the surface integral of a vector field over a closed surface ...