enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  3. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...

  4. SymPy - Wikipedia

    en.wikipedia.org/wiki/SymPy

    Cross-platform. Type. Computer algebra system. License. New BSD License. Website. www.sympy.org. SymPy is an open-source Python library for symbolic computation. It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3]

  5. Fletcher's checksum - Wikipedia

    en.wikipedia.org/wiki/Fletcher's_checksum

    When the data word is divided into 16-bit blocks, two 16-bit sums result and are combined into a 32-bit Fletcher checksum. Usually, the second sum will be multiplied by 2 16 and added to the simple checksum, effectively stacking the sums side-by-side in a 32-bit word with the simple checksum at the least significant end. This algorithm is then ...

  6. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = be mod m = d−e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m). Modular exponentiation is efficient to compute, even for very large integers.

  7. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  8. Mathematical operators and symbols in Unicode - Wikipedia

    en.wikipedia.org/wiki/Mathematical_operators_and...

    Mathematical operators and symbols are in multiple Unicode blocks. Some of these blocks are dedicated to, or primarily contain, mathematical characters while others are a mix of mathematical and non-mathematical characters. This article covers all Unicode characters with a derived property of "Math". [2][3]

  9. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Zn; it has φ (n) elements, φ being Euler's totient function, and is denoted as U (n) or ...