enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Projection (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Projection_(linear_algebra)

    A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .

  3. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .

  4. Orthographic projection - Wikipedia

    en.wikipedia.org/wiki/Orthographic_projection

    Orthographic projection (also orthogonal projection and analemma) [a] is a means of representing three-dimensional objects in two dimensions.Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane, [2] resulting in every plane of the scene appearing in affine transformation on the viewing surface.

  5. Projection matrix - Wikipedia

    en.wikipedia.org/wiki/Projection_matrix

    A matrix, has its column space depicted as the green line. The projection of some vector onto the column space of is the vector . From the figure, it is clear that the closest point from the vector onto the column space of , is , and is one where we can draw a line orthogonal to the column space of .

  6. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    Orthogonal matrices with determinant −1 do not include the identity, and so do not form a subgroup but only a coset; it is also (separately) connected. Thus each orthogonal group falls into two pieces; and because the projection map splits, O(n) is a semidirect product of SO(n) by O(1).

  7. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    Diagram for vector projection proof. Let P be the point with coordinates (x 0, y 0) and let the given line have equation ax + by + c = 0. Also, let Q = (x 1, y 1) be any point on this line and n the vector (a, b) starting at point Q.

  8. Numerical methods for linear least squares - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Since (+) = + (the property of pseudoinverse), the matrix is an orthogonal projection onto the image (column-space) of X. In accordance with a general approach described in the introduction above (find XS which is an orthogonal projection),

  9. Distance from a point to a plane - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    In Euclidean space, the distance from a point to a plane is the distance between a given point and its orthogonal projection on the plane, the perpendicular distance to the nearest point on the plane.