enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Free surface - Wikipedia

    en.wikipedia.org/wiki/Free_surface

    Free surface. In physics, a free surface is the surface of a fluid that is subject to zero parallel shear stress, [1] such as the interface between two homogeneous fluids. [2] An example of two such homogeneous fluids would be a body of water (liquid) and the air in the Earth's atmosphere (gas mixture). Unlike liquids, gases cannot form a free ...

  3. Computational methods for free surface flow - Wikipedia

    en.wikipedia.org/wiki/Computational_methods_for...

    Computational methods for free surface flow. In physics, a free surface flow is the surface of a fluid flowing that is subjected to both zero perpendicular normal stress and parallel shear stress. This can be the boundary between two homogeneous fluids, like water in an open container and the air in the Earth's atmosphere that form a boundary ...

  4. Computational fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Computational_fluid_dynamics

    t. e. Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid (liquids and gases) with surfaces ...

  5. Boundary conditions in fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Boundary_conditions_in...

    Showing wall boundary condition. The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1]

  6. Boundary conditions in computational fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Boundary_conditions_in...

    These conditions are used when we don’t know the exact details of flow distribution but boundary values of pressure are known For example: external flows around objects, internal flows with multiple outlets, buoyancy-driven flows, free surface flows, etc. The pressure corrections are taken zero at the nodes.

  7. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral ...

  8. No-slip condition - Wikipedia

    en.wikipedia.org/wiki/No-slip_condition

    The form of this boundary condition is an example of a Dirichlet boundary condition. In the majority of fluid flows relevant to fluids engineering, the no-slip condition is generally utilised at solid boundaries. [2] This condition often fails for systems which exhibit non-Newtonian behaviour. Fluids which this condition fails includes common ...

  9. Smoothed-particle hydrodynamics - Wikipedia

    en.wikipedia.org/wiki/Smoothed-particle...

    By construction, SPH is a meshfree method, which makes it ideally suited to simulate problems dominated by complex boundary dynamics, like free surface flows, or large boundary displacement. The lack of a mesh significantly simplifies the model implementation and its parallelization, even for many-core architectures.