Search results
Results from the WOW.Com Content Network
Protein precipitation is widely used in downstream processing of biological products in order to concentrate proteins and purify them from various contaminants. For example, in the biotechnology industry protein precipitation is used to eliminate contaminants commonly contained in blood. [ 1 ]
Proteins differ markedly in their solubilities at high ionic strength, therefore, "salting out" is a very useful procedure to assist in the purification of the desired protein. Ammonium sulfate is commonly used for precipitation because of its high solubility, additionally, it forms two ions high in the Hofmeister series .
The protein manufacturing cost remains high and there is a growing demand to develop cost efficient and rapid protein purification methods. Understanding of the different protein purification methods and optimizing the downstream processing are critical to minimize production costs while maintaining the quality of acceptable standards of homogeneity. [2]
Salting out (also known as salt-induced precipitation, salt fractionation, anti-solvent crystallization, precipitation crystallization, or drowning out) [1] is a purification technique that utilizes the reduced solubility of certain molecules in a solution of very high ionic strength.
As proteins have complex tertiary and quaternary structures due to their specific folding and various weak intermolecular interactions (e.g., hydrogen bridges), these superstructures can be modified and proteins denaturated and precipitated. Another important application of an antisolvent is in ethanol precipitation of DNA.
Immunoprecipitation of intact protein complexes (i.e. antigen along with any proteins or ligands that are bound to it) is known as co-immunoprecipitation (Co-IP). Co-IP works by selecting an antibody that targets a known protein that is believed to be a member of a larger complex of proteins.
The "salting out" effect is commonly exploited in protein purification through the use of ammonium sulfate precipitation. [16] However, these salts also interact directly with proteins (which are charged and have strong dipole moments) and may even bind specifically (e.g., phosphate and sulfate binding to ribonuclease A).
The Cohn process, developed by Edwin J. Cohn, is a series of purification steps with the purpose of extracting albumin from blood plasma.The process is based on the differential solubility of albumin and other plasma proteins based on pH, ethanol concentration, temperature, ionic strength, and protein concentration.