Search results
Results from the WOW.Com Content Network
The basic constructions. All straightedge-and-compass constructions consist of repeated application of five basic constructions using the points, lines and circles that have already been constructed. These are: Creating the line through two points; Creating the circle that contains one point and has a center at another point
Geometric Constructions is a mathematics textbook on constructible numbers, and more generally on using abstract algebra to model the sets of points that can be created through certain types of geometric construction, and using Galois theory to prove limits on the constructions that can be performed.
Cover of Lemoine's "Géométrographie" In the mathematical field of geometry, geometrography is the study of geometrical constructions. [1] The concepts and methods of geometrography were first expounded by Émile Lemoine (1840–1912), a French civil engineer and a mathematician, in a meeting of the French Association for the Advancement of the Sciences held at Oran in 1888.
Another method for computing the pseudoinverse (cf. Drazin inverse) uses the recursion + =, which is sometimes referred to as hyper-power sequence. This recursion produces a sequence converging quadratically to the pseudoinverse of A {\displaystyle A} if it is started with an appropriate A 0 {\displaystyle A_{0}} satisfying A 0 ...
In order to reduce a geometric problem to a problem of pure number theory, the proof uses the fact that a regular n-gon is constructible if and only if the cosine (/) is a constructible number—that is, can be written in terms of the four basic arithmetic operations and the extraction of square roots.
Neusis construction. In geometry, the neusis (νεῦσις; from Ancient Greek νεύειν (neuein) 'incline towards'; plural: νεύσεις, neuseis) is a geometric construction method that was used in antiquity by Greek mathematicians.
In mathematics, the Mohr–Mascheroni theorem states that any geometric construction that can be performed by a compass and straightedge can be performed by a compass alone. It must be understood that "any geometric construction" refers to figures that contain no straight lines, as it is clearly impossible to draw a straight line without a ...
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.