Search results
Results from the WOW.Com Content Network
m(NaCl) = 2 mol/L × 0.1 L × 58 g/mol = 11.6 g. To create the solution, 11.6 g NaCl is placed in a volumetric flask, dissolved in some water, then followed by the addition of more water until the total volume reaches 100 mL. The density of water is approximately 1000 g/L and its molar mass is 18.02 g/mol (or 1/18.02 = 0.055 mol/g). Therefore ...
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.
The molar mass of a substance depends not only on its molecular formula, but also on the distribution of isotopes of each chemical element present in it. For example, the molar mass of calcium-40 is 39.962 590 98 (22) g/mol, whereas the molar mass of calcium-42 is 41.958 618 01 (27) g/mol, and of calcium with the normal isotopic mix is 40.078(4 ...
The molar mass is defined as the mass of a given substance divided by the amount of the substance, and is expressed in grams per mol (g/mol). That makes the molar mass an average of many particles or molecules (potentially containing different isotopes), and the molecular mass the mass of one specific particle or molecule. The molar mass is ...
A solution with 1 g of solute dissolved in a final volume of 100 mL of solution would be labeled as "1%" or "1% m/v" (mass/volume). This is incorrect because the unit "%" can only be used for dimensionless quantities. Instead, the concentration should simply be given in units of g/mL.
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.
It is a dimensionless quantity with dimension of / and dimensionless unit of moles per mole (mol/mol or mol ⋅ mol-1) or simply 1; metric prefixes may also be used (e.g., nmol/mol for 10-9). [5] When expressed in percent , it is known as the mole percent or molar percentage (unit symbol %, sometimes "mol%", equivalent to cmol/mol for 10 -2 ).