enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Structured support vector machine - Wikipedia

    en.wikipedia.org/wiki/Structured_support_vector...

    The structured support-vector machine is a machine learning algorithm that generalizes the Support-Vector Machine (SVM) classifier. Whereas the SVM classifier supports binary classification , multiclass classification and regression , the structured SVM allows training of a classifier for general structured output labels .

  3. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.

  4. LIBSVM - Wikipedia

    en.wikipedia.org/wiki/LIBSVM

    LIBSVM and LIBLINEAR are two popular open source machine learning libraries, both developed at the National Taiwan University and both written in C++ though with a C API. LIBSVM implements the sequential minimal optimization (SMO) algorithm for kernelized support vector machines (SVMs), supporting classification and regression. [1]

  5. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    The soft-margin support vector machine described above is an example of an empirical risk minimization (ERM) algorithm for the hinge loss. Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss.

  6. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  7. Ranking SVM - Wikipedia

    en.wikipedia.org/wiki/Ranking_SVM

    The ranking SVM algorithm is a learning retrieval function that employs pairwise ranking methods to adaptively sort results based on how 'relevant' they are for a specific query. The ranking SVM function uses a mapping function to describe the match between a search query and the features of each of the possible results.

  8. One-class classification - Wikipedia

    en.wikipedia.org/wiki/One-class_classification

    The basic Support Vector Machine (SVM) paradigm is trained using both positive and negative examples, however studies have shown there are many valid reasons for using only positive examples. When the SVM algorithm is modified to only use positive examples, the process is considered one-class classification.

  9. Multiple instance learning - Wikipedia

    en.wikipedia.org/wiki/Multiple_Instance_Learning

    They tested the algorithm on Musk dataset, [4] [5] [dubious – discuss] which is a concrete test data of drug activity prediction and the most popularly used benchmark in multiple-instance learning. APR algorithm achieved the best result, but APR was designed with Musk data in mind. Problem of multi-instance learning is not unique to drug finding.