Search results
Results from the WOW.Com Content Network
Ripple-down rules consist of a data structure and knowledge acquisition scenarios. Human experts' knowledge is stored in the data structure. The knowledge is coded as a set of rules. The process of transferring human experts' knowledge to Knowledge-based systems in RDR is explained in knowledge acquisition scenario.
Knowledge representation and reasoning (KRR, KR&R, or KR²) is a field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks, such as diagnosing a medical condition or having a natural-language dialog.
An expert system is an example of a knowledge-based system. Expert systems were the first commercial systems to use a knowledge-based architecture. In general view, an expert system includes the following components: a knowledge base, an inference engine, an explanation facility, a knowledge acquisition facility, and a user interface. [48] [49]
Knowledge acquisition is the process used to define the rules and ontologies required for a knowledge-based system. The phrase was first used in conjunction with expert systems to describe the initial tasks associated with developing an expert system, namely finding and interviewing domain experts and capturing their knowledge via rules ...
The most common decision problems are basic database-query-like questions like instance checking (is a particular instance (member of an ABox) a member of a given concept) and relation checking (does a relation/role hold between two instances, in other words does a have property b), and the more global-database-questions like subsumption (is a ...
Toy problems were invented with the aim to program an AI which can solve it. The blocks world domain is an example for a toy problem. Its major advantage over more realistic AI applications is, that many algorithms and software programs are available which can handle the situation. [2] This allows to compare different theories against each other.
GBB1, [19] one of GBB's control shells implements BB1's style of control while adding efficiency improvements. Other well-known of early academic blackboard systems are the Hearsay II speech recognition system and Douglas Hofstadter's Copycat and Numbo projects. Some more recent examples of deployed real-world applications include:
knowledge-based: refers only to the system's architecture – it represents knowledge explicitly, rather than as procedural code Today, virtually all expert systems are knowledge-based, whereas knowledge-based system architecture is used in a wide range of types of system designed for a variety of tasks.