Search results
Results from the WOW.Com Content Network
Most of this energy is subsequently released as heat to the surrounding equipment space. Since most of the remaining central office energy use goes to cool the equipment room, the economic impact of making the electronic equipment energy-efficient would be considerable for companies that use and operate telecommunications equipment.
A heat sink (also commonly spelled heatsink, [1]) is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant, where it is dissipated away from the device, thereby allowing regulation of the device's temperature.
Heat sinks provide a path for heat from the LED source to outside medium. Heat sinks can dissipate power in three ways: conduction (heat transfer from one solid to another), convection (heat transfer from a solid to a moving fluid, which for most LED applications will be air), or radiation (heat transfer from two bodies of different surface temperatures through Thermal radiation).
Sources of waste heat include all manner of human activities, natural systems, and all organisms, for example, incandescent light bulbs get hot, a refrigerator warms the room air, a building gets hot during peak hours, an internal combustion engine generates high-temperature exhaust gases, and electronic components get warm when in operation.
Heat dissipation of over 1000 W/cm 2 has been reported. [46] The system can be operated at lower pressure in comparison to the micro-channel method. The heat transfer can be further increased using two-phase flow cooling and by integrating return flow channels (hybrid between micro-channel heatsinks and jet impingement cooling).
The thermal control subsystem can be composed of both passive and active items and works in two ways: Protects the equipment from overheating, either by thermal insulation from external heat fluxes (such as the Sun or the planetary infrared and albedo flux), or by proper heat removal from internal sources (such as the heat emitted by the internal electronic equipment).
Heat sinks are often attached to portions of the circuit that produce most heat or are vulnerable to heat. Fans are also often used. Some high-voltage instruments are kept immersed in oil. In some cases, to remove unwanted heat, a cooling system like air conditioning or refrigerating heat-pumps may be required.
Joule heating (also known as resistive, resistance, or Ohmic heating) is the process by which the passage of an electric current through a conductor produces heat.. Joule's first law (also just Joule's law), also known in countries of the former USSR as the Joule–Lenz law, [1] states that the power of heating generated by an electrical conductor equals the product of its resistance and the ...