enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Net force - Wikipedia

    en.wikipedia.org/wiki/Net_force

    The concept of "net force" comes into play when you look at the total effect of all of these forces on the body. However, the net force alone may not necessarily preserve the motion of the body. This is because, besides the net force, the 'torque' or rotational effect associated with these forces also matters. The net force must be applied at ...

  3. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...

  4. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    This can be used multiple times to calculate internal forces at different locations within a physical body. For example, a gymnast performing the iron cross: modeling the ropes and person allows calculation of overall forces (body weight, neglecting rope weight, breezes, buoyancy, electrostatics, relativity, rotation of the earth, etc.). Then ...

  5. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The Lorentz force law provides an expression for the force upon a charged body that can be plugged into Newton's second law in order to calculate its acceleration. [ 76 ] : 85 According to the Lorentz force law, a charged body in an electric field experiences a force in the direction of that field, a force proportional to its charge q ...

  6. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    Therefore, to calculate net forces on bodies (such as wings), viscous flow equations must be used: inviscid flow theory fails to predict drag forces, a limitation known as the d'Alembert's paradox. A commonly used [ 6 ] model, especially in computational fluid dynamics , is to use two flow models: the Euler equations away from the body, and ...

  7. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    The net force on the object must be zero if it is to be a situation of fluid statics such that Archimedes principle is applicable, and is thus the sum of the buoyancy force and the object's weight F net = 0 = m g − ρ f V disp g {\displaystyle F_{\text{net}}=0=mg-\rho _{f}V_{\text{disp}}g\,}

  8. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    Since the sum of all forces is the centripetal force, drawing centripetal force into a free body diagram is not necessary and usually not recommended. Using F net = F c {\displaystyle F_{\text{net}}=F_{c}} , we can draw free body diagrams to list all the forces acting on an object and then set it equal to F c {\displaystyle F_{c}} .

  9. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    The downward force of gravity (F g) equals the restraining force of drag (F d) plus the buoyancy. The net force on the object is zero, and the result is that the velocity of the object remains constant. Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example).