enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    Finding global maxima and minima is the goal of mathematical optimization. If a function is continuous on a closed interval, then by the extreme value theorem, global maxima and minima exist. Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the ...

  3. Golden-section search - Wikipedia

    en.wikipedia.org/wiki/Golden-section_search

    The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.

  4. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    In conjunction with the extreme value theorem, it can be used to find the absolute maximum and minimum of a real-valued function defined on a closed and bounded interval. In conjunction with other information such as concavity, inflection points, and asymptotes, it can be used to sketch the graph of a function.

  5. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    A continuous function () on the closed interval [,] showing the absolute max (red) and the absolute min (blue). In calculus , the extreme value theorem states that if a real-valued function f {\displaystyle f} is continuous on the closed and bounded interval [ a , b ] {\displaystyle [a,b]} , then f {\displaystyle f} must attain a maximum and a ...

  6. Concave function - Wikipedia

    en.wikipedia.org/wiki/Concave_function

    The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield. Near a strict local maximum in the interior of the domain of a function, the function must be concave; as a partial converse, if the derivative of a strictly concave ...

  7. Independent set (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Independent_set_(graph_theory)

    An independent set in an interval graph is just a set of non-overlapping intervals. The problem of finding maximum independent sets in interval graphs has been studied, for example, in the context of job scheduling: given a set of jobs that has to be executed on a computer, find a maximum set of jobs that can be executed without interfering ...

  8. Maximal independent set - Wikipedia

    en.wikipedia.org/wiki/Maximal_independent_set

    The maximum independent set is represented by the top left. A graph may have many MISs of widely varying sizes; [a] the largest, or possibly several equally large, MISs of a graph is called a maximum independent set. The graphs in which all maximal independent sets have the same size are called well-covered graphs.

  9. Closed graph theorem - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem

    Closed graph theorem for set-valued functions [6] — For a Hausdorff compact range space , a set-valued function : has a closed graph if and only if it is upper hemicontinuous and F(x) is a closed set for all .