Search results
Results from the WOW.Com Content Network
A variant of the spigot approach uses an algorithm which can be used to compute a single arbitrary digit of the transcendental without computing the preceding digits: an example is the Bailey–Borwein–Plouffe formula, a digit extraction algorithm for π which produces base 16 digits. The inevitable truncation of the underlying infinite ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The Gauss–Legendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π . However, it has some drawbacks (for example, it is computer memory -intensive) and therefore all record-breaking calculations for many years have used other ...
Machin-like formulas for π can be constructed by finding a set of integers , =, where all the prime factorisations of + , taken together, use a number of distinct primes , and then using either linear algebra or the LLL basis-reduction algorithm to construct linear combinations of arctangents of . For example, in the Størmer formula ...
Rosetta Code is a wiki-based programming chrestomathy website with implementations of common algorithms and solutions to various programming problems in many different programming languages. [ 1 ] [ 2 ] It is named for the Rosetta Stone , which has the same text inscribed on it in three languages, and thus allowed Egyptian hieroglyphs to be ...
In computer science, the process calculi (or process algebras) are a diverse family of related approaches for formally modelling concurrent systems.Process calculi provide a tool for the high-level description of interactions, communications, and synchronizations between a collection of independent agents or processes.
The π-calculus belongs to the family of process calculi, mathematical formalisms for describing and analyzing properties of concurrent computation.In fact, the π-calculus, like the λ-calculus, is so minimal that it does not contain primitives such as numbers, booleans, data structures, variables, functions, or even the usual control flow statements (such as if-then-else, while).
In computer science, communicating sequential processes (CSP) is a formal language for describing patterns of interaction in concurrent systems. [1] It is a member of the family of mathematical theories of concurrency known as process algebras, or process calculi, based on message passing via channels.