enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orchestrated objective reduction - Wikipedia

    en.wikipedia.org/wiki/Orchestrated_objective...

    Orch OR combines the Penrose–Lucas argument with Hameroff's hypothesis on quantum processing in microtubules. It proposes that when condensates in the brain undergo an objective wave function reduction, their collapse connects noncomputational decision-making to experiences embedded in spacetime's fundamental geometry.

  3. Quantum optical coherence tomography - Wikipedia

    en.wikipedia.org/wiki/Quantum_optical_coherence...

    Quantum optical coherence tomography (Q-OCT) is an imaging technique that uses nonclassical (quantum) light sources to generate high-resolution images based on the Hong-Ou-Mandel effect (HOM). [1] Q-OCT is similar to conventional OCT but uses a fourth-order interferometer that incorporates two photodetectors rather than a second-order ...

  4. Cytoskeleton - Wikipedia

    en.wikipedia.org/wiki/Cytoskeleton

    In 1903, Nikolai K. Koltsov proposed that the shape of cells was determined by a network of tubules that he termed the cytoskeleton. The concept of a protein mosaic that dynamically coordinated cytoplasmic biochemistry was proposed by Rudolph Peters in 1929 [12] while the term (cytosquelette, in French) was first introduced by French embryologist Paul Wintrebert in 1931.

  5. Microtubule - Wikipedia

    en.wikipedia.org/wiki/Microtubule

    Microtubule and tubulin metrics [1]. Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nm [2] and have an inner diameter between 11 and 15 nm. [3]

  6. Coherence theory (optics) - Wikipedia

    en.wikipedia.org/wiki/Coherence_theory_(optics)

    In physics, coherence theory is the study of optical effects arising from partially coherent light and radio sources. Partially coherent sources are sources where the coherence time or coherence length are limited by bandwidth, by thermal noise, or by other effect. Many aspects of modern coherence theory are studied in quantum optics.

  7. Bose–Einstein correlations - Wikipedia

    en.wikipedia.org/wiki/Bose–Einstein_correlations

    As long as the number of particles of a quantum system is fixed the system can be described by a wave function, which contains all the information about the state of that system. This is the first quantization approach and historically Bose–Einstein and Fermi–Dirac correlations were derived through this wave function formalism.

  8. Higher order coherence - Wikipedia

    en.wikipedia.org/wiki/Higher_order_coherence

    In quantum optics, correlation functions are used to characterize the statistical and coherence properties – the ability of waves to interfere – of electromagnetic radiation, like optical light. Higher order coherence or n-th order coherence (for any positive integer n>1) extends the concept of coherence to quantum optics and coincidence ...

  9. Optical coherence tomography - Wikipedia

    en.wikipedia.org/wiki/Optical_coherence_tomography

    Optical coherence tomogram of a fingertip. It is possible to observe the sweat glands, having "corkscrew appearance" Interferometric reflectometry of biological tissue, especially of the human eye using short-coherence-length light (also referred to as partially-coherent, low-coherence, or broadband, broad-spectrum, or white light) was investigated in parallel by multiple groups worldwide ...