Search results
Results from the WOW.Com Content Network
14, OR, Logical disjunction; 15, true, Tautology. Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule: when p=T (the hypothesis selects the first two lines of the table), we see (at column-14) that p∨q=T.
The name "disjunctive syllogism" derives from its being a syllogism, a three-step argument, and the use of a logical disjunction (any "or" statement.) For example, "P or Q" is a disjunction, where P and Q are called the statement's disjuncts. The rule makes it possible to eliminate a disjunction from a logical proof. It is the rule that
In propositional logic, conjunction elimination (also called and elimination, ∧ elimination, [1] or simplification) [2] [3] [4] is a valid immediate inference, argument form and rule of inference which makes the inference that, if the conjunction A and B is true, then A is true, and B is true.
A clause is a disjunction of literals (or a single literal). A clause is called a Horn clause if it contains at most one positive literal. A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses (or a single clause). For example, x 1 is a positive literal, ¬x 2 is a negative literal, and x 1 ∨ ¬x 2 is a clause.
In propositional logic, disjunction elimination [1] [2] (sometimes named proof by cases, case analysis, or or elimination) is the valid argument form and rule of inference that allows one to eliminate a disjunctive statement from a logical proof.
In boolean logic, a disjunctive normal form (DNF) is a canonical normal form of a logical formula consisting of a disjunction of conjunctions; it can also be described as an OR of ANDs, a sum of products, or — in philosophical logic — a cluster concept. [1] As a normal form, it is useful in automated theorem proving.
Constructive dilemma [1] [2] [3] is a valid rule of inference of propositional logic.It is the inference that, if P implies Q and R implies S and either P or R is true, then either Q or S has to be true.
In a Hilbert system, the premises and conclusion of the inference rules are simply formulae of some language, usually employing metavariables.For graphical compactness of the presentation and to emphasize the distinction between axioms and rules of inference, this section uses the sequent notation instead of a vertical presentation of rules.