enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prime-counting function - Wikipedia

    en.wikipedia.org/wiki/Prime-counting_function

    In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. [1] [2] It is denoted by π(x) (unrelated to the number π). A symmetric variant seen sometimes is π 0 (x), which is equal to π(x) − 1 ⁄ 2 if x is exactly a prime number, and equal to π(x) otherwise.

  3. Explicit formulae for L-functions - Wikipedia

    en.wikipedia.org/wiki/Explicit_formulae_for_L...

    Riemann's original use of the explicit formula was to give an exact formula for the number of primes less than a given number. To do this, take F(log(y)) to be y 1/2 /log(y) for 0 ≤ y ≤ x and 0 elsewhere. Then the main term of the sum on the right is the number of primes less than x.

  4. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    For example, π(10) = 4 because there are four prime numbers (2, 3, 5 and 7) less than or equal to 10. The prime number theorem then states that x / log x is a good approximation to π(x) (where log here means the natural logarithm), in the sense that the limit of the quotient of the two functions π(x) and x / log x as x increases without ...

  5. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    More precisely, they showed that there exist positive constants c and C such that for all sufficiently large numbers N, every even number less than N is the sum of two primes, with at most CN 1 − c exceptions. In particular, the set of even integers that are not the sum of two primes has density zero.

  6. Chebyshev function - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_function

    The Chebyshev functions, especially the second one ψ (x), are often used in proofs related to prime numbers, because it is typically simpler to work with them than with the prime-counting function, π (x) (see the exact formula below.) Both Chebyshev functions are asymptotic to x, a statement equivalent to the prime number theorem.

  7. Divergence of the sum of the reciprocals of the primes

    en.wikipedia.org/wiki/Divergence_of_the_sum_of...

    It is almost certain that Euler meant that the sum of the reciprocals of the primes less than n is asymptotic to log log n as n approaches infinity. It turns out this is indeed the case, and a more precise version of this fact was rigorously proved by Franz Mertens in 1874. [3]

  8. Logarithmic integral function - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_integral_function

    In particular, according to the prime number theorem, it is a very good approximation to the prime-counting function, which is defined as the number of prime numbers less than or equal to a given value . Logarithmic integral function plot

  9. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    In the graph at right the top line y = n − 1 is an upper bound valid for all n other than one, and attained if and only if n is a prime number. A simple lower bound is φ ( n ) ≥ n / 2 {\displaystyle \varphi (n)\geq {\sqrt {n/2}}} , which is rather loose: in fact, the lower limit of the graph is proportional to ⁠ n / log log n ⁠ .