Search results
Results from the WOW.Com Content Network
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions.German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. [1] It is often said to have begun with Peter Gustav Lejeune Dirichlet 's 1837 introduction of Dirichlet L -functions to give the first proof of Dirichlet's theorem on arithmetic progressions .
In mathematics, more specifically in the field of analytic number theory, a Landau–Siegel zero or simply Siegel zero, also known as exceptional zero [1]), named after Edmund Landau and Carl Ludwig Siegel, is a type of potential counterexample to the generalized Riemann hypothesis, on the zeros of Dirichlet L-functions associated to quadratic number fields.
1. The class number of a number field is the cardinality of the ideal class group of the field. 2. In group theory, the class number is the number of conjugacy classes of a group. 3. Class number is the number of equivalence classes of binary quadratic forms of a given discriminant. 4. The class number problem. conductor
Bernoulli number. Agoh–Giuga conjecture; Von Staudt–Clausen theorem; Dirichlet series; Euler product; Prime number theorem. Prime-counting function. Meissel–Lehmer algorithm; Offset logarithmic integral; Legendre's constant; Skewes' number; Bertrand's postulate. Proof of Bertrand's postulate; Proof that the sum of the reciprocals of the ...
Traditionally, number theory is the branch of mathematics concerned with the properties of integers and many of its open problems are easily understood even by non-mathematicians. More generally, the field has come to be concerned with a wider class of problems that arise naturally from the study of integers.
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers , finite fields , and function fields .
If a is any number coprime to n then a is in one of these residue classes, and its powers a, a 2, ... , a k modulo n form a subgroup of the group of residue classes, with a k ≡ 1 (mod n). Lagrange's theorem says k must divide φ ( n ) , i.e. there is an integer M such that kM = φ ( n ) .