enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cartesian product - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product

    If the Cartesian product rows × columns is taken, the cells of the table contain ordered pairs of the form (row value, column value). [4] One can similarly define the Cartesian product of n sets, also known as an n-fold Cartesian product, which can be represented by an n-dimensional array, where each element is an n-tuple.

  3. Tychonoff's theorem - Wikipedia

    en.wikipedia.org/wiki/Tychonoff's_theorem

    Tychonoff's theorem has been used to prove many other mathematical theorems. These include theorems about compactness of certain spaces such as the Banach–Alaoglu theorem on the weak-* compactness of the unit ball of the dual space of a normed vector space, and the Arzelà–Ascoli theorem characterizing the sequences of functions in which every subsequence has a uniformly convergent ...

  4. Category of sets - Wikipedia

    en.wikipedia.org/wiki/Category_of_sets

    Every two-element set serves as a subobject classifier in Set. The power object of a set A is given by its power set, and the exponential object of the sets A and B is given by the set of all functions from A to B. Set is thus a topos (and in particular cartesian closed and exact in the sense of Barr). Set is not abelian, additive nor preadditive.

  5. Product measure - Wikipedia

    en.wikipedia.org/wiki/Product_measure

    In mathematics, given two measurable spaces and measures on them, one can obtain a product measurable space and a product measure on that space. Conceptually, this is similar to defining the Cartesian product of sets and the product topology of two topological spaces, except that there can be many natural choices for the product measure.

  6. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...

  7. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    Throughout this article, capital letters (such as ,,,,, and ) will denote sets.On the left hand side of an identity, typically, will be the L eft most set,; will be the M iddle set, and

  8. Product topology - Wikipedia

    en.wikipedia.org/wiki/Product_topology

    The axiom of choice occurs again in the study of (topological) product spaces; for example, Tychonoff's theorem on compact sets is a more complex and subtle example of a statement that requires the axiom of choice and is equivalent to it in its most general formulation, [3] and shows why the product topology may be considered the more useful ...

  9. Binary function - Wikipedia

    en.wikipedia.org/wiki/Binary_function

    A binary operation is a binary function where the sets X, Y, and Z are all equal; binary operations are often used to define algebraic structures. In linear algebra, a bilinear transformation is a binary function where the sets X, Y, and Z are all vector spaces and the derived functions f x and f y are all linear transformations.