Search results
Results from the WOW.Com Content Network
In muscle cells, for example, an action potential is the first step in the chain of events leading to contraction. In beta cells of the pancreas , they provoke release of insulin . [ a ] Action potentials in neurons are also known as " nerve impulses " or " spikes ", and the temporal sequence of action potentials generated by a neuron is called ...
The slope of phase 0 on the action potential waveform (see figure 2) represents the maximum rate of voltage change of the cardiac action potential and is known as dV/dt max. In pacemaker cells (e.g. sinoatrial node cells ), however, the increase in membrane voltage is mainly due to activation of L-type calcium channels.
Cardiac action potential; Compound action potential; Compound muscle action potential; E. End-plate potential; L. Local field potential; P. Pacemaker action potential;
In neuroscience, an excitatory postsynaptic potential (EPSP) is a postsynaptic potential that makes the postsynaptic neuron more likely to fire an action potential. This temporary depolarization of postsynaptic membrane potential , caused by the flow of positively charged ions into the postsynaptic cell, is a result of opening ligand-gated ion ...
In electrophysiology, the threshold potential is the critical level to which a membrane potential must be depolarized to initiate an action potential. In neuroscience , threshold potentials are necessary to regulate and propagate signaling in both the central nervous system (CNS) and the peripheral nervous system (PNS).
The signal is a short electrical pulse called action potential or 'spike'. Fig 2. Time course of neuronal action potential ("spike"). Note that the amplitude and the exact shape of the action potential can vary according to the exact experimental technique used for acquiring the signal.
As an example, the cardiac action potential illustrates how differently shaped action potentials can be generated on membranes with voltage-sensitive calcium channels and different types of sodium/potassium channels. The second type of mathematical model is a simplification of the first type; the goal is not to reproduce the experimental data ...
From the axon hillock, an action potential can be generated and propagated down the neuron's axon, causing sodium ion channels in the axon to open as the impulse travels. Once the signal begins to travel down the axon, the membrane potential has already passed threshold, which means that it cannot be stopped. This phenomenon is known as an all ...