Search results
Results from the WOW.Com Content Network
As an action potential (nerve impulse) travels down an axon there is a change in electric polarity across the membrane of the axon. In response to a signal from another neuron, sodium- (Na +) and potassium- (K +)–gated ion channels open and close as the membrane reaches its threshold potential.
In excitable cells, such as neurons, the delayed counterflow of potassium ions shapes the action potential. By contributing to the regulation of the cardiac action potential duration in cardiac muscle, malfunction of potassium channels may cause life-threatening arrhythmias. Potassium channels may also be involved in maintaining vascular tone.
The slope of phase 0 on the action potential waveform (see figure 2) represents the maximum rate of voltage change of the cardiac action potential and is known as dV/dt max. In pacemaker cells (e.g. sinoatrial node cells), however, the increase in membrane voltage is mainly due to activation of L-type calcium channels.
The potassium channels exhibit a delayed reaction to the membrane repolarisation, and, even after the resting potential is achieved, some potassium continues to flow out, resulting in an intracellular fluid that is more negative than the resting potential, and during which no action potential can begin (undershoot phase/refractory period). This ...
This combination of closed sodium channels and open potassium channels leads to the neuron re-polarizing and becoming negative again. The neuron continues to re-polarize until the cell reaches ~ –75 mV, [2] which is the equilibrium potential of potassium ions. This is the point at which the neuron is hyperpolarized, between –70 mV and –75 mV.
This inactivation shuts off the sodium current and plays a critical role in the action potential. Ion channels can be classified by how they respond to their environment. [21] For example, the ion channels involved in the action potential are voltage-sensitive channels; they open and close in response to the voltage across the membrane.
The cardiac action potential has five phases. I to1 is active during phase 1, causing a fast repolarization of the action potential. The cardiac transient outward potassium current (referred to as I to1 or I to [1]) is one of the ion currents across the cell membrane of heart muscle cells.
This gene encodes a member of the potassium channel, voltage-gated, shal-related subfamily, members of which form voltage-activated A-type potassium ion channels and are prominent in the repolarization phase of the action potential. This gene is expressed at moderate levels in all tissues analyzed, with lower levels in skeletal muscle. [5]