enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect laterally. The critical load puts the column in a state of unstable equilibrium. A load beyond the critical load causes the column to fail by buckling. As the load is increased beyond the ...

  3. Geometric and material buckling - Wikipedia

    en.wikipedia.org/.../Geometric_and_Material_Buckling

    Geometric buckling is a measure of neutron leakage and material buckling is a measure of the difference between neutron production and neutron absorption. [1] When nuclear fission occurs inside of a nuclear reactor, neutrons are produced. [1] These neutrons then, to state it simply, either react with the fuel in the reactor or escape from the ...

  4. Perry–Robertson formula - Wikipedia

    en.wikipedia.org/wiki/Perry–Robertson_formula

    The Perry–Robertson formula is a mathematical formula which is able to produce a good approximation of buckling loads in long slender columns or struts, and is the basis for the buckling formulation adopted in EN 1993. The formula in question can be expressed in the following form:

  5. Johnson's parabolic formula - Wikipedia

    en.wikipedia.org/wiki/Johnson's_parabolic_formula

    In structural engineering, Johnson's parabolic formula is an empirically based equation for calculating the critical buckling stress of a column. The formula is based on experimental results by J. B. Johnson from around 1900 as an alternative to Euler's critical load formula under low slenderness ratio (the ratio of radius of gyration to ...

  6. Specific modulus - Wikipedia

    en.wikipedia.org/wiki/Specific_modulus

    These buckling modes depend on material properties other than stiffness and density, so the stiffness-over-density-cubed metric is at best a starting point for analysis. For example, most wood species score better than most metals on this metric, but many metals can be formed into useful beams with much thinner walls than could be achieved with ...

  7. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    The calculated buckling load of the member may be compared to the applied load. The calculated stiffness and mass distribution of the member may be used to calculate the member's dynamic response and then compared to the acoustic environment in which it will be used.

  8. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    It can also be used for finding buckling loads and post-buckling behaviour for columns. Consider the case whereby we want to find the resonant frequency of oscillation of a system. First, write the oscillation in the form, y ( x , t ) = Y ( x ) cos ⁡ ω t {\displaystyle y(x,t)=Y(x)\cos \omega t} with an unknown mode shape Y ( x ...

  9. Southwell plot - Wikipedia

    en.wikipedia.org/wiki/Southwell_plot

    Southwell Plot constructed from a straight line fitted to experimental data points. The Southwell plot is a graphical method of determining experimentally a structure's critical load, without needing to subject the structure to near-critical loads. [1]