Search results
Results from the WOW.Com Content Network
Every subgroup of an abelian group is normal, so each subgroup gives rise to a quotient group. Subgroups, quotients, and direct sums of abelian groups are again abelian. The finite simple abelian groups are exactly the cyclic groups of prime order. [6]: 32 The concepts of abelian group and -module agree.
Every abelian category A is a module over the monoidal category of finitely generated abelian groups; that is, we can form a tensor product of a finitely generated abelian group G and any object A of A. The abelian category is also a comodule; Hom(G,A) can be interpreted as an object of A.
Similarly, the additive group of the integers (, +) is not simple; the set of even integers is a non-trivial proper normal subgroup. [1] One may use the same kind of reasoning for any abelian group, to deduce that the only simple abelian groups are the cyclic groups of prime order. The classification of nonabelian simple groups is far less trivial.
An object in Ab is injective if and only if it is a divisible group; it is projective if and only if it is a free abelian group. The category has a projective generator (Z) and an injective cogenerator (Q/Z). Given two abelian groups A and B, their tensor product A⊗B is defined; it is again an abelian group.
Pages in category "Abelian group theory" The following 37 pages are in this category, out of 37 total. This list may not reflect recent changes. 0–9. Abelian 2 ...
Every elementary abelian p-group is a vector space over the prime field with p elements, and conversely every such vector space is an elementary abelian group. By the classification of finitely generated abelian groups, or by the fact that every vector space has a basis, every finite elementary abelian group must be of the form (Z/pZ) n for n a ...
In group theory, a Dedekind group is a group G such that every subgroup of G is normal. All abelian groups are Dedekind groups. A non-abelian Dedekind group is called a Hamiltonian group. [1] The most familiar (and smallest) example of a Hamiltonian group is the quaternion group of order 8, denoted by Q 8.
The fundamental theorem of finitely generated abelian groups can be stated two ways, generalizing the two forms of the fundamental theorem of finite abelian groups.The theorem, in both forms, in turn generalizes to the structure theorem for finitely generated modules over a principal ideal domain, which in turn admits further generalizations.